Mark Scheme (Results) June 2010

GCE

GCE Chemistry (6CH08/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

Summer 2010
Publications Code UA023646
All the material in this publication is copyright
© Edexcel Ltd 2010

Question Number	Acceptable Answers	Reject	Mark
1 (a)	Compound contains a transition metal (ion) / Compound contains chromate((VI))/CrO4		
	Allow any yellow salt (name or correct formula) Allow 'transition element / metal (present)' Ignore d block Ignore any cation included	Dichromate oxides	1

Question Number	Acceptable Answers	Reject	Mark
1 (b)	Sodium (ions) present $/ \mathrm{Na}^{+}$	Na Anion	1

Question Number	Acceptable Answers	Reject	Mark
$1(\mathrm{c})$	dichromate(VI) / dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} /$ $2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ Ignore references to the other ions present $\left(\mathrm{Na}^{+}, 2 \mathrm{H}^{+}, \mathrm{SO}_{4}^{2-}\right)$ No TE	$\mathrm{Cr}(\mathrm{VI})$ Cr^{6+}	1

Question Number	Acceptable Answers	Reject	Mark
1 (d)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} /$ dichromate((VI))(allow $\left.\mathrm{Cr}(\mathrm{VI})\right)$ is reduced (by the ethanol)/ the ethanol is oxidized (by $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}($ allow $\left.\mathrm{Cr}(\mathrm{VI}))\right) /$ the ethanol forms ethanal $/$ ethanoic acid (1) $\mathrm{Cr}^{3+} /$ chromium(III) $/ \mathrm{Cr}(\mathrm{III})$ formed (1) Allow fully balanced ionic half-equation (2) No TE	Cr^{6+}	2

Question Number	Acceptable Answers	Reject	Mark
1 (e)	Precipitate chromium(III) hydroxide $/ \mathrm{Cr}(\mathrm{OH})_{3} /$ $\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(1)$ Solution chromate(III) / tetrahydroxochromate(III) / hexahydroxochromate(III) / $\mathrm{Cr}(\mathrm{OH})_{4}^{-}$/ $\mathrm{Cr}(\mathrm{OH})_{6}{ }^{3-}$ (1) Allow hydrated forms / $\mathrm{CrO}_{2}{ }^{-} / \mathrm{CrO}_{3}{ }^{3-}$ Allow chromium hydroxide if Cr^{3+} Allow $\mathrm{Cr}(\mathrm{OH})_{5}{ }^{2-}$ Ignore number of water ligands	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{3} \\ & \\ & \mathrm{Cr}^{3+} \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
$1(\mathrm{f})$	Pale blue ions $\mathrm{Cr}^{2+} / \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}{ }^{2+}$ chromium(II)/Cr(II) (1) Role of zinc Reducing agent / Reduces / Reduction / providing electrons (1)	Cu^{2+}	

Question Number	Acceptable Answers	Reject	Mark
1 (g)	Green ions $\mathrm{Cr}^{3+} /$ chromium(III) / Cr(III) (1) Explanation The Cr Cr^{2+} chromium(II) / Cr(II) (allow 'blue species') is oxidized by (oxygen in) the air (1) Ignore water ligands Allow oxidized by oxygen	2	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	OH / hydroxyl group present OR Compound could be an alcohol / OH or a carboxylic acid / COOH	Hydroxide / OH^{-} alcohol / carboxylic acid alone	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(ii)	P is (an alcohol) not a carboxylic acid	Alcohol without three carbons	1
	Allow P is an alcohol if in (a)(i) P is described as "an alcohol or a carboxylic acid" Ignore primary and/or secondary	(ach	

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	P contains the group $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-/ \mathrm{P}$ is a 2-ol	P is a methylketone / ethanol / methyl alcohol	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	P is propan-2-ol $/ \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	Molecular formula only	1
	No TE on earlier incorrect answer		

Question Number	Acceptable Answers	Reject	Mark
$2(\mathrm{a})(\mathrm{v})$	Peak is caused by $\left(\mathrm{CH}_{3} \mathrm{CHOH}\right)^{+} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+} /$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{+}(1)$ stand alone	Formula without positive charge	2
	(molecular ion (of propan-2-ol) will fragment by) loss of one CH_{3} group $/ \mathrm{CH}_{3}^{\bullet} / \mathrm{CH}_{3}$ radical (1) Second mark can be awarded only if ion has relative mass of 45 Allow the molecule fragments (instead of molecular ion) Allow equations with charge not balanced	Breaking C-C bond on its own	CH_{3}^{+}

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	Hydrogen chloride / HCl		
	Allow hydrochloric acid / HCl(aq)	HCl and POCl_{3}	1

Question	Acceptable Answers	Reject	Mark
Number	(b)(ii)	Q is a carboxylic acid / $\mathrm{COOH} /$	Carboxylate
	Allow $\mathrm{CO}_{2} \mathrm{H} /$ propanoic acid / carboxylic alone	1	
	OH		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	Qis propanoic acid $/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} /$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$		

Question Number	Acceptable Answers	Reject	Mark
$3(\mathrm{a})$	$\mathrm{Fe}+2 \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}$ $\mathrm{Fe}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O}$ Ignore state symbols and correct sulfate formulae	Non ionic equation	1

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Effervescence / fizzing stopped/no more bubbles of gas given off	All iron dissolved Allow no more gas given off	Steamy fumes (for gas)

Question	Acceptable Answers							Mark
3 (c)(i)								2
	Titre / cm^{3}	23.35	23.05	22.70	23.00	22.95	(1)	
	Titres used (\checkmark or x)	x	\checkmark	x	\checkmark	\checkmark	(1)	
	Ignore omission of trailing zeros							

Question Number	Acceptable Answers	Reject	Mark
3 (c)(ii)	$((23.05+23.00+22.95) \div 3)=23.00\left(\mathrm{~cm}^{3}\right)$		1
	Allow 23 / 23.0 TE from (c)(i)		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(iii)	(A) Moles MnO_{4}^{-}(in titre) $=23.00 \times 10^{-3} \times .022$ $=5.06 \times 10^{-4}(1)$ (B) Moles Fe^{2+} in $250 \mathrm{~cm}^{3}=10 \times 5 \times$ Answer in (A) $(=0.0253)(1)$ (C) Mass of $\mathrm{Fe}=$ Answer in $\mathrm{B} \times 55.8(=0.0253 \mathrm{x}$ $55.8=1.41(\mathrm{~g}))(1)$ (D) \% iron $=100 x$ answer in $\mathrm{C} \div 1.48$ (= 95.4%) (1) Ignore SF except 1 SF Ignore correct intermediate rounding of calculated values Allow 56 for A_{r} of iron (95.7%) Allow TE from (c)(i) and (ii) Correct answers with no working score full marks	\% > 100 \%	4

Question Number	Acceptable Answers	Reject	Mark		
3 (d)	Iron(II) ions: Pipette and sulfuric acid: measuring cylinder (1) both needed for the mark	An exact volume of iron(II) ion solution is needed but only an approximate volume of /excess sulfuric acid (1) The second mark may be awarded if a burette and measuring cylinder are given Allow any recognisable spelling of pipette, eg pipet	Just pipette more accurate than measuring cylinder	\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
3 (e)	To ensure that the manganate(VII) ions were fully reduced (to manganese(II)) Or To ensure MnO_{2} is not precipitated Allow Large number of H^{+}ions required in (titration) equation 8 moles H^{+}ions required (per mol Fe ${ }^{2+}$ in titration) To prevent oxidation of Fe^{2+} by (oxygen in) air or by water To prevent hydrolysis	To ensure complete reaction	1

Question Number	Acceptable Answers	Reject	Mark
3 (f)	First permanent pink colour	Purple to pink Turns purple	1

Question Number	Acceptable Answers	Reject	Mark
3 (g)	$\mathrm{HCl} / \mathrm{Cl}^{-}$will be oxidized (to chlorine) by the manganate(VII) OR $\mathrm{HCl} / \mathrm{Cl}^{-}$will react with manganate(VII) to form chlorine (1)	$\mathrm{HCl} / \mathrm{Cl}^{-}$ strong reducing agent / oxidised by Fe Just chlorine formed	2
So the reaction of the iron(II) ions with manganate(VII) will not be quantitative/titre will be too high (1)	Titration values inaccurate	Allow permanganate / manganate (for manganate(VII)) Ignore references to toxicity of chlorine	

Question Number	Acceptable Answers	Reject	Mark
$4(\mathrm{a})$	Amount of phenylamine $=9 / 93 / 0.0968(\mathrm{~mol})$ (1) $=$ amount of ethanoic anhydride Mass ethanoic anhydride $=102 \times 9 / 93=9.87(\mathrm{~g})$ (1)	2	
Ignore SF except 1 SF Correct answer with no working scores full marks Mr values reversed scores max 1 only if a mole calculation is clearly shown			

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	To ensure that all the phenylamine reacts	So ethanoic anhydride is in excess	1
To ensure complete reaction	1		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	Reaction is exothermic / produces heat Allow reaction is vigorous so that the temperature does not increase (too much) Ignore references to the reaction being violent, dangerous, explosive etc	1	

Question Number	Acceptable Answers	Reject	Mark
4 (b)(iii)	Mistake: The condenser water flow is wrong way round so air may be trapped/jacket will not be full of water (1) Allow cooling not so effective / flammable liquid might escape Correction Reverse the flow of water (1)	4	
Mistake: Flammable liquids are being heated with a Bunsen/naked flame (1) Correction so the Bunsen burner should be replaced by a hot plate (allow water bath) (1) OR Mistake: Heating with a Bunsen too strong (so glass may crack) (1) Correction Use micro-burner/gauze (1)			

Question Number	Acceptable Answers	Reject	Mark
(b)(iv)			
		Funnel (conical allowed) with grid / line / horizontal filter paper (1) Side-arm conical flask (with valve or connection to a pump) (1)	
Reduced pressure achieved by: Flow of water through the pump/valve/can be shown in diagram (reduces pressure in the flask) (1) Allow using a (vacuum / suction) pump connected to side-arm (connection may be shown in diagram)(1)			

Question Number	Acceptable Answers	Reject	Mark
4 (c)	Mass of N-phenylethanamide if 100% yield $=135 \times 9 / 93(1)=13.06 \mathrm{~g}$ Yield $=100 \times 7.49 / 13.06=57.3 \%(1)$ Alternatively Moles phenylamine $=9 / 93=0.0968$ Moles N-phenylethanamide $=7.49 / 135=0.0555$ (1) Yield $=100 \times .0555 / .0968=57.3 \%(1)$ Correct answer with no working scores (2) Ignore sf except 1 sf Yields greater than 100% score zero	$100 \times 7.49 / 9$ $=83.2 \%(0)$	2

Question Number	Acceptable Answers	Reject	Mark
4 (d)	Some of the N-phenylethanamide will remain on the filter paper/will be deposited on the sides of the glassware/in solution (and will not be recovered by filtration)		1

Question Number	Acceptable Answers	Reject	Mark
4 (e)	The product was not dry / was damp / water (still) present Ignore reference to impurities present		1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA023646 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

